Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068662

RESUMO

Anthropogenic activities have raised cadmium (Cd) concentrations in agricultural soil, emerging as a primary catalyst for the decline in crop yield. Intercropping of two or several plants is one technique among many Cd phytoremediation techniques that has gained enormous attention recently. However, the impact of cultivation modes on Cd movement in rice plants when intercropped with heavy metal (HM) hyperaccumulator plants remains unclear. Thus, this study was designed to explore the effects of cultivation modes and the intercropping of rice with Solanum nigrum L. on rice growth and Cd uptake in Cd-contaminated soil. The experimental design encompassed five treatments: dry cultivation of monocultured rice, monocultured Solanum nigrum L., and intercropped rice-Solanum nigrum L.; flood cultivation of monocultured rice; and intercropped rice-Solanum nigrum L. in a high-bed and low-ditch planting system. The results revealed a significant increase in rice growth when intercropped with Solanum nigrum L., with a notable increase of 18.32 g∙plant-1 observed in rice biomass in dry cultivation under the intercropping system. In contrast, a more modest increase of 3.67 g∙plant-1 was observed in the high-bed and low-ditch intercropped rice-Solanum nigrum L. mode. The soil total Cd was higher in dry cultivation of monocultured rice and Solanum nigrum L. compared to intercropped rice/Solanum nigrum L.-cultivated soil, with lower values recorded for intercropped rice/Solanum nigrum L. under the high-bed and low-ditch planting system. In contrast, no significant effect was noted on soil exchangeable Cd content based on the planting pattern and cultivation mode. Intercropping with Solanum nigrum L. demonstrated a significant reduction of Cd content in various rice tissues, particularly in roots at the maturity stage, while Cd content was reduced across all rice tissues under the high-bed and low-ditch planting system. The Cd content in the stem, leaves, and bran of monocropped rice was higher compared to intercropped rice. This study suggests that the rice-Solanum nigrum L. intercropping system effectively reduces rice Cd uptake, particularly under the high-bed and low-ditch planting system.

2.
Ecotoxicol Environ Saf ; 266: 115549, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813077

RESUMO

The effects of root exudates and irrigation with treated wastewater on heavy metal mobility and soil bacterial composition under intercropping remain poorly understood. We conducted a pot experiment with maize and soybean grown in monocultures or intercultures, irrigated with either groundwater or treated wastewater. In addition, the pre-collected root exudates from hydroponic culture with mono- or inter-cropped maize and soybean were applied to the soil at four levels (0 %, 16 %, 32 % and 64 %). The results showed that application of root exudates increased plant growth and soil nutrient content. The analysis of "Technique for Order of Preference by Similarity to Ideal Solution" for higher plant biomass and lower soil Cd and Pb concentrations indicated that the best performance of soybean under treated wastewater irrigation was recorded under intercropping applied with 64 % of exudates, with a performance score of 0.926 and 0.953 for Cd and Pb, respectively. The second-best performance of maize under treated wastewater irrigation was also observed under intercropping applied with 64 % of exudates. Root exudate application reduced heavy metals migration in the soil-plant system, with a greater impact in intercropping than in monocropping. In addition, certain soil microorganisms were also increased with root exudate application, regardless of irrigation water. This study suggests that appropriate application of root exudates could potentially improve plant growth and soil health, and reduce toxic heavy metal concentrations in soils and plants irrigated with treated wastewater.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Glycine max , Águas Residuárias , Zea mays , Cádmio/análise , Chumbo/análise , Metais Pesados/análise , Poluentes do Solo/análise
3.
ACS Omega ; 8(20): 17983-17991, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251179

RESUMO

Despite the significant number of studies that have recently focused on plant invasion and invasive plants' success, many uncertainties still exist on the effects of invasive plant identity and diversity on the native plant response under different levels of diversity. A mixed planting experiment was conducted using the native Lactuca indica (L. indica) and four invasive plants. The treatments consisted of 1, 2, 3, and 4 levels of invasive plants richness in different combinations in competition with the native L. indica. Here, the results showed that native plant response depends on the invasive plant identity and invasive plant diversity, which increases the native plant total biomass under 2-3 levels of invasive plant richness and decreases under high invasive plant density. This plant diversity effect was more significant in the native plant relative interaction index, which shows negative values except under a single invasion with Solidago canadensis and Pilosa bidens. The native plant leaf nitrogen level increased under four levels of invasive plant richness, which means more affected by invasive plant identity than invasive plant diversity. Finally, this study demonstrated that native plant response under invasion depends on the identity and diversity of invasive plants.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36834038

RESUMO

Water deficit is a major problem affecting crop production worldwide. The use of treated wastewater in irrigation systems improves soil health and enhances crop growth and productivity. However, it has been characterized as a source of heavy metals. The unknown is how heavy metals' movements would be impacted under an intercropping system when irrigated with treated wastewater. Understanding the dynamic of heavy metals in soil-plant systems is essential for environmental risk assessment and sustainable agriculture. A greenhouse pot experiment was conducted to explore the effects of treated wastewater irrigation on plant growth, soil chemical properties, and the movements of Zn, Cu, Pb, and Cd from soil to plants in monoculture and intercropping systems. Maize and soybean were selected as the test crops and groundwater and treated livestock wastewater as the water sources. This study found that treated wastewater irrigation and intercropping systems synergically increased the soil nutrient content and crop growth. The concentrations of Zn, Pb, and Cd were significantly higher in leaves compared to other plant parts contrastingly to Cu, which was higher in roots. In addition, treated wastewater irrigation increased grain nutrient content in mono- and intercropping systems while the concentration of heavy metals was in the acceptable range for human consumption. The enrichment degree of Cu and Pb due to treated livestock wastewater irrigation relative to groundwater irrigation was higher in uncultivated soil compared with cultivated soil. This study showed that the intercropping system facilitated heavy metals' transfer from soil to plant except for Cd. These findings provide guidelines for a safe utilization of treated wastewater in agricultural systems and to reduce freshwater use pressure.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Animais , Solo/química , Águas Residuárias , Glycine max , Zea mays/química , Gado , Cádmio , Chumbo , Metais Pesados/análise , Água , Poluentes do Solo/análise , Irrigação Agrícola
5.
Life (Basel) ; 12(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431033

RESUMO

Native and invasive plant competition is usually controlled by the soil properties and the soil type underlying interspecific interactions. However, many uncertainties exist regarding the impact of soil type on native plant growth under single invasion and co-invasion despite the significant number of previous studies that focused on plant invasion. This study aims to elucidate the effects of soil type on the response of the native plant Pterocypsela laciniata under single invasion and co-invasion. Three different soils were used: natural soil, nutrient soil, and nutrient sterilized soil. The native P. laciniata was grown in monoculture and under single invasion and co-invasion with Solidago canadensis and Aster subulatus Michx. The results show that the native plant height and total biomass were 75% and 93.33% higher, respectively, in nutrient sterilized soil in monoculture than in natural and nutrient soil. In contrast, the native P. laciniata presents its best competitive ability in nutrient sterilized soil, being about 100% higher than in natural and nutrient soil under single invasion and co-invasion. However, no significant increase was observed in its growth parameters under co-invasion compared to single invasion. Conclusively, this study shows that nutrient soil sterilization positively affects native plant growth in monoculture and under single invasion, contrasting co-invasion in which more pronounced negative effects were observed on the native plant response.

6.
Front Plant Sci ; 13: 1105006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714732

RESUMO

Chemical fertilizer overuse is a major environmental threat, critically polluting soil and water resources. An optimization of nitrogen (N) fertilizer application in winter wheat (Triticum aestivum L.) in association with various irrigation scheduling is a potential approach in this regard. A 2-year field experiment was carried out to assess the growth, yield and photosynthetic capacity of drip-irrigated winter wheat subjected to various split applications of urea (240 kg ha-1, 46% N). The eight treatments were, two irrigation scheduling and six N application modes in which, one slow-release fertilizer (SRF). Irrigation scheduling was based on the difference between actual crop evapotranspiration and precipitation (ETa-P). The two irrigation scheduling were I45 (Irrigation scheduling when ETa-P reaches 45 mm) and I30 (Irrigation scheduling when ETa-P reaches 30 mm). The six N levels were N0-100 (100% from jointing to booting), N25-75 (25% during sowing and 75% from jointing to booting), N50-50 (50% during sowing and 50% from jointing to booting), N75-25 (75% during sowing and 25% from jointing to booting), N100-0 (100% during sowing), and SRF100 (240 kg ha-1, 43% N during sowing). N top-dressing application significantly (P<0.05) influenced wheat growth, aboveground biomass (ABM), grain yield (GY) and its components, photosynthetic and chlorophyll parameters, and plant nutrient content. According to the averages of the two winter wheat-growing seasons, the I45N50-50 and I45SRF100 treatments, respectively had the highest GY (9.83 and 9.5 t ha-1), ABM (19.91 and 19.79 t ha-1), net photosynthetic rate (35.92 and 34.59 µmol m-2s-1), stomatal conductance (1.387 and 1.223 mol m-2s-1), SPAD (69.33 and 64.03), and chlorophyll fluorescence FV/FM (8.901 and 8.922). The present study provided convincing confirmation that N applied equally in splits at basal-top-dressing rates could be a desirable N application mode under drip irrigation system and could economically compete with the costly SRF for winter wheat fertilization. The I45N50-50 treatment offers to farmers an option to sustain wheat production in the NCP.

7.
Ecol Evol ; 10(2): 832-842, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32015847

RESUMO

The distribution of invasive and native species in wetlands is determined by hydrological conditions; whereas conditions such as water depth fluctuations, variations in the nutrient concentrations are expected to affect the growth and physiological traits of plants. For the assessment of such effects, we conduct greenhouse experiment with three factors; 1) water depth of 5 cm and 15 cm (static and fluctuated); 2) three levels of nutrient concentrations (i) full-strength Hoagland solution (N1), (ii) »-strength Hoagland solution (N2), and (iii) 1/8-strength Hoagland solution (N3); and 3) species, invasive Wedelia trilobata (L.) and its congener, native Wedelia chinensis (Osbeck.) under mono and mixed culture. Water depth of 5 cm combined with any of the nutrient treatments significantly restrained the photosynthesis, intracellular CO2 concentration and leaf chlorophyll of both W. trilobata and W. chinensis. Increase in the water depth to 15 cm with low-nutrient treatment N3 did not sustain the physiological traits of W. chinensis under mono and mixed planting. A great loss was noted in the growth of W. chinensis at 15 cm static and fluctuated water depth with low-nutrient treatment (N3) and under mixed culture. In addition, water depth fluctuations with both low- and high-nutrient treatments significantly affected the root-shoot ratio, relative growth rate, and interspecific interaction among these two species. W. trilobata benefited more from competitive interaction index (CII) under fluctuated water depth at 15 cm with high nutrients, and the value of CII was clearly positive. Therefore, higher competitive ability may contribute to the invasiveness of W. trilobata in wetlands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...